Corrigendum: 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response

نویسندگان

  • A. Maiti
  • W. Small
  • J. P. Lewicki
  • T. H. Weisgraber
  • E. B. Duoss
  • S. C. Chinn
  • M. A. Pearson
  • C. M. Spadaccini
  • R. S. Maxwell
  • T. S. Wilson
چکیده

3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curves predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter's improved long-term stability and mechanical performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental and Numerical Simulation Investigation on Crushing Response of Foam-Filled Conical Tubes Stiffened with Annular Rings

In this paper, crashworthiness characteristics of conical steel tubes stiffened by annular rings and rigid polyurethane foam are investigated. For this purpose, wide circumferential rings are created from the outer surface of the conical tube at some determined areas along tube length. In fact, this method divides a long conical tube into several tubes of shorter length. When this structure is ...

متن کامل

The mechanics and design of a lightweight three-dimensional graphene assembly

Recent advances in three-dimensional (3D) graphene assembly have shown how we can make solid porous materials that are lighter than air. It is plausible that these solid materials can be mechanically strong enough for applications under extreme conditions, such as being a substitute for helium in filling up an unpowered flight balloon. However, knowledge of the elastic modulus and strength of t...

متن کامل

Modeling of Compression Curves of Flexible Polyurethane Foam with Variable Density, Chemical Formulations and Strain Rates

Flexible Polyurethane (PU) foam samples with different densities and chemical formulations were tested in quasi-static stress-strain compression tests. The compression tests were performed using the Lloyd LR5K Plus instrument at fixed compression strain rate of 0.033 s-1 and samples were compressed up to 70% compression strains. All foam samples were tested in the foam rise direction and their ...

متن کامل

Negative Poisson's ratio in 2D Voronoi cellular solids by biaxial compression: a numerical study

A 2D (two dimensional) random cellular solid model was built using FEM(finite element method) based on a modified Voronoi tessellation technique. A sequence of permanent biaxial compression deformations was applied on the model to obtain a series of re-entrant random cellular solid structures with different area compression ratios. The Poisson's ratio and energy absorption capacity of cellular ...

متن کامل

Effects of Nanoclay on Cellular Morphology and Water Absorption Capacity of Poly(vinyl alcohol) Foam

The present work was aimed to examine the effects of incorporation of each of two different types of nanoclay, i.e. Cloisite Na+ and Cloisite 30B, into PVA foam on cellular morphology and water absorption capacity. Foam samples containing 0.0-10.0 wt% of each of the two types of nanoclay alone were prepared using mechanical foaming. Accordingly, PVA/organoclay/water suspensions were prepare...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016